

LP Series - Digital

LP Series - Digital is a surface mountable pressure sensor package with a compensated digital output suitable for **ultra-low pressure sensing applications**.

COMPANY: Merit Sensor is a leader in piezoresistive pressure sensing and partners with clients to create high performing solutions for a variety of applications and industries.

SENTIUM: Merit Sensor products incorporate a proprietary Sentium® technology developed to provide a best-in-class operating temperature range (-40°C to 85°C) and superior stability.

TECHNOLOGY: Merit Sensor utilizes a piezoresistive Wheatstone bridge in a design that anodically bonds glass to a chemically etched silicon diaphragm. All products are RoHS compliant.

CAPABILITIES: Merit Sensor designs, engineers, fabricates, dices, assembles, tests, and sells die and packaged products from a state-of-the-art facility near Salt Lake City, Utah.

FEATURES

Pressure 0.15 to 1 psi (10.3 to 68.9 mbar; 1.03 to 6.89 KPa;

Range 4.2 to 27.7 in H_2O)

Output Digital I²C

Type Gage and Differential

Media Clean, Dry Air and Non-corrosive Gases

Packaging Tape and Reel

Customization Supply Voltage, Temperature Calibration Range,

Output Range, Accuracy Specification,

Update Rate, etc

BENEFITS

Performance Enjoy best-in-class performance due to Merit's

proprietary Sentium technology

Cost Save money over time with high-performing die

Security Feel confident doing business with an experienced

company backed by a solid parent company

(NASDAQ: MMSI)

Speed Get to market quickly with creative and

flexible solutions

Service Experience prompt, personal and

professional support

SPECIFICATIONS

Parameter	Minimum	Typical	Maximum	Units	Notes				
Electrical									
Supply Voltage (Vs)	2.7	5	5.5	V					
Supply Current	1.2	2	3.5	mA	(1)				
Operating Temperature	-40		85	°C					
Storage Temperature	-55		100	°C		(a) (
Performance						Notes: (1) @5V input voltage,			
Effective ADC Resolution		13		Bits		(2) Over 0°C to 60°C			
Pressure Accuracy	-1.5		1.5	%FS	(2) (3)	(3) Applicable if Vdd = 4.75 to 5.25V (4) Full scale pressure			
Long-Term Stability	-0.5		0.5	%FS					
Startup Time		15		ms					
Digital Update Time	2	5	125	ms					
Proof Pressure	5X				(4)				
Burst Pressure	10 psi								
Transfer Function Formula									
$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$			Where P _{psi} = Measured Pressure in PSI P _{counts} = Pressure Counts from Merit Sensor Part						
Media Compatibility									
For Use With Non-corrosive Dry Gasses Solder temperature: max 250 °C, 5 seconds max									

CROSS SECTION

MEMS sensing element (differential pressure) Cover/mechanical protection Soft die attach material Integrated signal Conditionioning (ASIC) Filter capacitor

ELECTRICAL

Note: Power supply decoupling included

PACKAGING

DIMENSIONS FOR STANDARD OPTIONS (in millimeters)

Dimensions for reference only. Engineering drawings (with tolerance) available upon order.

I²C PARAMETERS *

Parameter	Symbol	Min	Тур	Max	Units
SCL clock frequency	fscL	100		400	kHz
Start condition hold time relative to SCL edge	t hdsta	0.1			μs
Minimum SCL clock low width ¹	tLOW	0.6			μs
Minimum SCL clock high width ¹	tніgн	0.6			μs
Start condition setup time relative to SCL edge	t susta	0.1			μs
Data hold time on SDA relative to SCL edge	t hddat	0.0			μs
Data setup time on SDA relative to SCL edge	tsudat	0.1			μs
Stop condition setup time on SCL	tsusto	0.1			μs
Bus free time between stop condition and start condition	tBUS	2			μs

¹Combined low and high widths must equal or exceed minimum SCLK period.

I²C TIMING DIAGRAM*

MERIT SENSOR 1420 I²C COMMUNICATION

Communications to the 1420 is read only. To read the pressure counts, the master performs a read request by asserting a start condition, sending the 7 bit address of the part (If the part has an open address, 7 bits of anything is acceptable), and sets the read/write bit. The master then waits for an acknowledgment. The acknowledgment is sent by the pressure sensor along with 2 bits of status and bits 13:8 of the pressure counts, the master acknowledges the first 8 bits, and the pressure sensor sends the remaining 8 bits of data. The Master then does not acknowledge and sends a stop condition signaling the end of the transaction.

^{*}Used by permission, IDT

TRANSFER FUNCTION EXAMPLES

Example 1: 0.15 PSI Gage

Part: 1420-P15G-xx11-111

Pmin =0.0 PSI

 $P_{\text{max}} = 0.15 PSI$

Pcounts = 7215

Max = 16384

$$\begin{aligned} P_{psi} &= \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min} \\ P_{Psi} &= \left(0.15 - 0.0\right) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0 \end{aligned}$$

$$P_{Psi} = (0.15 - 0.0) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0$$

 $P_{Psi} = .0638 \ Psi$

Example 2: -.5 to .5 PSI Differential

Part: 1420-P50D-xx11-111

 $P_{\text{min}} = -0.5 PSI$

 $P_{\text{max}} = 0.5 PSI$

Pcounts =8192

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = \left(0.5 - \left(-0.5\right)\right) \cdot \left(\frac{8192 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + \left(-0.5\right)$$

 $P_{Psi} = 0.0 Psi$

